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Abstract and Introduction 
 
Measurement systems are at the heart of most all analytical laboratories, and generate data upon 
which chemical quality control and fab processes are based. To assess the quality of such results, 
various statistical procedures have been devised and implemented.  However, the reliability and 
usefulness of these protocols depend not only on the care with which they are implemented, but 
also on the degree to which their underlying assumptions are understood and met.   
 
This paper discusses several different statistical approaches, as they apply to qualifying data 
from externally calibrated measurement systems.  (Such systems are ones whose raw data are not 
in the units desired by the customer.  External standards of known concentrations must be 
analyzed and a regression-based calibration curve must be generated to transform the results into 
the desired units.)  These statistical approaches are: 1) statistical process control, 2) gage 
repeatability and reproducibility studies, 3) traditional method detection limits and quantitation 
limits and 4) designed calibration studies. For each protocol, the underlying assumptions, 
strengths and weaknesses will be presented, and (where appropriate) example calculations will 
be discussed.   
 
Statistical Process Control (SPC) 
 
SPC was developed to be used primarily in a manufacturing setting.  However, the technique 
also is used to monitor and evaluate analytical instruments.  The goal is to be certain that the 
instrument and measurement process are in control.  For this use of SPC, a check standard is 
analyzed routinely (ideally, these analyses are made at defined time intervals).  The calculated 
concentrations are plotted on a graph known as an individuals (X) chart.  A second plot, known 
as a moving-range (mR) chart is also constructed.  (The difference between the first two 
successive check-standard results is calculated for the first point.  For the second point,  a new 
range is calculated by dropping the first point and adding the third.  This pattern is followed with 
each new analysis.)  Upper and lower control limits are calculated for each chart.  Rules are 
established to decide when excursions outside these limits constitute an out-of-control situation.   
 
A more robust version of this technique involves the analyses of a pair of check standards.  One 
standard is at the low end of the working range and the other solution is at the high end.  A pair 
of charts is generated for each standard.  A pair is also constructed for the difference between the 
two results, a procedure that may reveal trends that are hard to spot in either of the other two 
pairs of charts. 
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The primary assumptions behind this SPC technique are that the concentration data are 
independent (i.e., not drifting) and exhibit a Gaussian distribution.  The advantage SPC provides 
is that the charts provide a real-time, dynamic tool for spotting shifts and trends in the 
instrument's performance.  However, the technique does not capture the uncertainty or possible 
bias (i.e., true concentration minus reported concentration) associated with the calibration 
process.  Additionally, rates of false negatives and false positives are not incorporated into SPC.  
Finally, unless approximately 20 averages have been calculated, the control charts may simply 
be tracking noise.  Thus, this technique is not a realistic alternative for evaluating a newly 
calibrated (or recalibrated) method.    
 
Gage Repeatability & Reproducibility (GR&R) Studies 
 
GR&R studies determine how much measurement-system variability can be ascribed to the 
operator (one definition of reproducibility) and how much can be ascribed to the measurement 
itself (repeatability).  Typically, variability charts are used in the data-analysis process.   
 
Several assumptions are associated with GR&R.  First, the data are continuous, have not been 
rounded, and contain no outliers.  Second, the only contributors to variation (other than different 
sample values)  are the analyst/operator and the instrument/measurement system.  Third, the data 
are in post-calibration units.  Fourth, there is no interaction between any two factors (i.e., no 
factor influences any other).  Fifth, measurement variation (i.e., standard deviation) is constant 
across any given factor (e.g., all analysts are equally consistent).  Sixth, the chosen analysts and 
measurements are representative of a population.   
 
It is not uncommon for at least some of the above assumptions to be false.  The most frequent 
(and most damaging) violations occur with the first, second and fifth stipulations; it is actually 
highly likely that the standard deviation will change across at least one factor.  Also, a factor that 
often contributes significantly to variation is the instrument-calibration procedure; yet GR&R 
does not address this source.   
 
Further problems arise with GR&R because it is not strictly applicable to all measurement-
analysis scenarios.  For example, a single-instrument, single-operator method does not fall 
cleanly into this type of study.  In these situations, a factor (e.g., the day) other than the operator 
must be chosen to assess reproducibility.  Because the above assumptions and applicability 
requirements often are not met, GR&R is not an appropriate tool for evaluating an externally 
calibrated measurement system. 
 
Traditional Detection Limits (DLs) and Quantitation Limits (QLs) 
 
An almost universally utilized approach to evaluate methods is the calculation of a method 
detection limit (if the sensitivity of the procedure will be challenged) and a quantitation limit.  
The assumptions are that: 1) a blank or (low-level standard) is available, 2) results (converted to 
concentration units) from seven or eight replicate analyses are available and 3) the false-positive 
rate (FP; i.e., false detections when measuring blanks) is set at 1%.  Once the data are obtained, 
the standard deviation of the responses is calculated and multiplied by Student's t (2.998 for 
seven degrees of freedom and FP = 1%).  The result (known as 3σ) is the detection limit.  (If a 
low-level standard was used instead of a blank, the calculated DL must be greater than [(1/5) * 
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the concentration] to be valid.)  The quantitation level is set at a higher number of standard 
deviations, typically 10σ.  An example of DL calculations is shown in Figure 1. 
 
The advantages of this technique are: 1) the data are easy to generate (only seven or eight 
replicate analyses are required), 2) the calculations are simple and 3) false positives are 
controlled tightly (i.e., FP = 1%).  However, four statistically important issues are ignored: 1) the 
false-negative rate (FN), 2) calibration uncertainty, 3) bias and 4) any change that may occur in 
response standard deviation as concentration changes.   
 
Failure to address FNs has serious consequences.  Assume that the 3σ DL coincides with the 
threshold (i.e., the concentration below which no response can be detected at all).  Assume also 
that a sample with true concentration equal to the 3σ DL is analyzed in replicate.  The Normal 
distribution of calculated concentrations will be centered at the threshold.  Thus, half of the 
analyses will have responses that cannot be detected because they fall below the threshold.  In 
other words, FN = 50%! 
 
If the standard deviation of the response changes with concentration, then Ordinary Least 
Squares (OLS, the "default" fitting technique used with calibration models) is inappropriate; 
OLS assumes that this standard deviation is constant throughout the concentration range.  In such 
non-constant cases, Weighted Least Squares (WLS) should be used.  With this technique, 
weights are applied to the responses and are the reciprocal of the square of the standard 
deviation.  The result is that the noisy data are not allowed to influence the curve as much as are 
the more well-behaved numbers.  If OLS is used inappropriately, the estimates of calibration 
coefficients are noisier, the curve's prediction interval is incorrect (see below for more details on 
this latter topic), and the estimated detection limit will be incorrect.  In the end, traditional DLs 
and QLs typically are not sound statistically and should be viewed as such.   
 
Designed Calibration Studies 
 
The preferred technique to evaluate methods for externally calibrated instruments is a carefully 
designed calibration study.  Not only do the resulting data allow for proper assessment of the 
method, but also they provide a realistic quantification of the uncertainty inherent in any reported 
sample result. 
 
The assumptions behind this approach are that: 1) reliable, known values are available for the 
calibration standards, 2) the instrument responses (e.g., peak area or absorption units) exhibit a 
Gaussian distribution and 3) the calibration study has been designed properly so as to include an 
adequate number and spacing of concentrations, plus an adequate number of replicates. 
 
These three stipulations typically can be met.  The third directive requires a little time and 
careful thought, but the process becomes almost intuitive after several studies have been 
designed and performed.  A carefully constructed calibration study will allow the analyst to: 1) 
model the standard deviation of the response (i.e., decide if response variation changes with 
concentration), 2) obtain a low detection limit (if sensitivity is an issue), 3) detect curvature in 
the data, 4) obtain high precision in any critical concentration area, 5) construct a curve that will 
cover the concentration range expected for typical samples, and (possibly most importantly), 6) 
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construct the prediction interval (for any sample that is analyzed via this curve, this interval 
reveals the overall uncertainty associated with the result). 
 
If recovery is an issue, a spiking study should be conducted after the calibration work is 
completed.  Concentrations of the spikes are predicted via the calibration curve.  These 
predictions then can be plotted vs. true concentration, and the associated prediction interval 
constructed.  Once unknown samples have been analyzed via the calibration curve, this recovery 
plot can be used to correct the values for any recovery problems.  The intercept of the line 
represents any arithmetic offset; the slope of the line represents the proportional recovery.  For 
the chosen confidence level, the recovery curve's prediction interval gives the overall uncertainty 
associated with the entire method.  An example plot is given in Figure 2. 
 
Summary 
 
Although there is no perfect technique for the statistical analysis of externally calibrated 
measurement systems, many of the typically used procedures are not adequate for this type of 
evaluation.  In general, designed calibration studies are preferred (over, e.g., SPC, GR&R studies 
and traditional DL/QL calculations), since they can account for more of the variability that is 
typically encountered in a method. 
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Figure 1.  MDL calculations for nitrate in 30% hydrogen peroxide, using each of the three 
lowest spike concentrations.  All MDL estimates are greater than 1/5 of the respective spike 
level.  Note the dependence of the MDL on the spike concentration. 

 
Spike conc. (ppb) MDL - Nitrate Spike ppb / 5 

   
10.1 15.4 2.0 
12.5 11.2 2.5 
15.0 13.2 3.0 
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Figure 2.  Recovery plots for nitrate and fluoride in 30% hydrogen peroxide.  The bias portion of 
the recovery is given by the y-intercept.  The proportional recovery is given by the slope.  The 
uncertainty in the recovery estimates is given by the prediction interval (the dotted lines 
enveloping the recovery curve).  Note that high slope does not guarantee high precision, and vice 
versa. 
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